120 research outputs found

    Radial Velocities of Stars in the Galactic Center

    Get PDF
    We present results from K band slit scan observations of a ~20''x20'' region of the Galactic center (GC) in two separate epochs more than five years apart. The high resolution (R>=14,000) observations allow the most accurate radial velocity and acceleration measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935 microns and the He I lines at ~2.0581 microns and ~2.112, 2.113 microns: cool, narrow-line hot and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8(+/-10.3) km/s and a standard deviation ~113.7(+/-10.3) km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of 3.9(+/-1.1) million solar masses, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late type stars support the existence of a low density region at the Galactic center suggested by earlier observations. Many hot, early-type stars show radial velocity changes higher than maximum values allowed by pure circular orbital motions around a central massive object, suggesting that the motions of these stars greatly deviate from circular orbital motions around the Galactic center. The correlation between the radial velocities of the early type He I stars and their declination offsets from Sagittarius A* suggests that a systematic rotation is present for the early-type population. No figure rotation around the Galactic center for the late type stars is supported by the new observations.Comment: 61 pages, 18 figures, 7 tables; accepted for publication in Astrophysical Journa

    The Double-Lined Spectrum of LBV 1806-20

    Full text link
    Despite much theoretical and observational progress, there is no known firm upper limit to the masses of stars. Our understanding of the interplay between the immense radiation pressure produced by massive stars in formation and the opacity of infalling material is subject to theoretical uncertainties, and many observational claims of ``the most massive star'' have failed the singularity test. LBV 1806-20 is a particularly luminous object, L~10^6 Lsun, for which some have claimed very high mass estimates (M_initial>200 Msun), based, in part, on its similarity to the Pistol Star. We present high-resolution near-infrared spectroscopy of LBV 1806-20, showing that it is possibly a binary system with components separated in velocity by ~70 kms. If correct, then this system is not the most massive star known, yet it is a massive binary system. We argue that a binary, or merged, system is more consistent with the ages of nearby stars in the LBV 1806-20 cluster. In addition, we find that the velocity of V_LSR=36 kms is consistent with a distance of 11.8 kpc, a luminosity of 10^6.3 Lsun, and a system mass of ~130 Msun.Comment: ApJL, accepte

    First record of the critically endangered Hydrangea steyermarkii Standl. (Hydrangeaceae) in Mexico, and description of a new widespread Hydrangea species of Mesoamerica

    Get PDF
    Based on our detailed observations in the field, completed with herbarium material of representatives of Hydrangea section Cornidia in southeastern Mexico and Central America, we found that Hydrangea steyermarkii Standley, in contrast to what has been assumed up to now, is restricted to the Tacana Volcano on the border of Mexico and Guatemala. The majority of the specimens with reddish or whitish indument on their branches in South East Mexico and Central America, belonging to this nearly exclusively Neotropical Hydrangea clade, had been identified as such, but the characters of these collections do not coincide with the single type specimen of H. steyermarkii, neither with other individuals of this species growing in the type locality area. In fact, nearly all specimens of Mesoamerica that had been identified as this species belong to a new species with a relatively wide distribution, which we describe here. This new species is illustrated and compared with H. steyermarkii, of which we also provide an amended description and illustrations. Finally, on the basis of these two species we document previously suggested dioecism in this plant group, which not only has consequences for systematics and nomenclature in this clade, but also for conservation

    The chemical abundances in the Galactic Centre from the atmospheres of Red Supergiants

    Get PDF
    The Galactic Centre (GC) has experienced a high degree of recent star-forming activity, as evidenced by the large number of massive stars currently residing there. The relative abundances of chemical elements in the GC may provide insights into the origins of this activity. Here, we present high-resolution HH-band spectra of two Red Supergiants in the GC (IRS~7 and VR~5-7), and in combination with spectral synthesis we derive abundances for Fe and C, as well as other α\alpha-elements Ca, Si, Mg Ti and O. We find that the C-depletion in VR~5-7 is consistent with the predictions of evolutionary models of RSGs, while the heavy depletion of C and O in IRS~7's atmosphere is indicative of deep mixing, possibly due to fast initial rotation and/or enhanced mass-loss. Our results indicate that the {\it current} surface Fe/H content of each star is slightly above Solar. However, comparisons to evolutionary models indicate that the {\it initial} Fe/H ratio was likely closer to Solar, and has been driven higher by H-depletion at the stars' surface. Overall, we find α\alpha/Fe ratios for both stars which are consistent with the thin Galactic disk. These results are consistent with other chemical studies of the GC, given the precision to which abundances can currently be determined. We argue that the GC abundances are consistent with a scenario in which the recent star-forming activity in the GC was fuelled by either material travelling down the Bar from the inner disk, or from the winds of stars in the inner Bulge -- with no need to invoke top-heavy stellar Initial Mass Functions to explain anomalous abundance ratios.Comment: 23 pages, 5 figs. Accepted for publication in Ap
    • …
    corecore